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Clipped correlation of integrated intensity fluctuations 
of gaussian light 

E. JAKEMAN, C. J. OLIVER and E. R. PIKE 
Royal Radar Establishment, Malvern, Worcestershire, UK 

MS.  received 7th June 1971 

Abstract. Experimental confirmation is presented of recent theoretical 
results of Jakeman on the time averaging of photon-counting fluctuations 
when utilizing clipping techniques for autocorrelation. The effects of finite 
electronic resolving time (dead-time correction) and finite receiving apertures 
(spatial-coherence correction) are included. 

1. Introduction 
Measurements of the intensity fluctuations of laser light scattered by protein 

molecules undergoing Brownian motion in solution have been used for the determina- 
tion of their diffusion coefficients. Dubin et al. (1967) determined the diffusion co- 
efficients of a number of biological macromolecules using a wave analyser to study the 
intensity-fluctuation spectra. More recently Foord et al. (1969, 1970) and Pike (1969) 
have described the use of a clipping digital correlator to analyse the photon-counting 
fluctuations of scattered laser light. This technique offers the advantages of parallel 
processing of the information, compared with the single-channel operation of the 
wave analyser. 

The  ‘single-clipped’ correlation function given by Foord et al. (1970) for gaussian- 
lorentzian light required a factor to allow for the experimental effects of finite time 
and space averaging. Both these effects give rise to loss of correlation and hence, 
other things being equal, to loss of measurement accuracy. For unclipped autocorre- 
lation functions this term could be factorized into spatial and temporal parts. The  
spatial part has been investigated by Scar1 (1968) and by Jakeman et al. (1970). 
The  temporal part has been calculated by Jakeman and Pike (see Pike 1969). For 
clipped correlation functions this factorization does not occur in general, but in the 
absence of any spatial-coherence correction the temporal effects have been evaluated 
by Jakeman (1970) for single- and double-clipped cases at clipping levels of zero. 
I n  this paper we present an approximate analysis of the combined effects of spatial 
coherence and clipping level as a function of count rate taking into account also the 
presence of a dead-time in the apparatus. The  formulae are used firstly to correct 
experimental results showing the dependence of the single-clipped autocorrelation 
function on clipping level in the limit of small sample time, and secondly in the 
experimental verification of the dependence of the single-clipped and double-clipped 
correlation functions on sample time when clipping is carried out at zero. A pre- 
liminary result of this work was given by Pike (1970), the aim is to obtain a complete 
understanding of experimental results obtained using these new techniques. 

2. Theory 
I n  this section we present formulae which can be used to correct the experimental 

measurements for dead-time effects and for the effect of finite aperture sizes and thus 
to enable a direct comparison with the theory of the effects of integration to be made. 
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I n  an earlier paper (Jakeman 1970) it was shown that when dead-time and finite- 
detector-area effects are neglected, the autocorrelation function of photon-counting 
fluctuations of gaussian-lorentzian light is determined by the generating function 
QL(s, s’) of the joint integrated intensity fluctuation distribution 

Here QL(s) is the generating function for the single integrated intensity fluctuation 
distribution of gaussian-lorentzian light (BCdard 1966, Jakeman and Pike 1968) 

(2) 

where 

y2 = y2 + 2ys { E )  

and 

y =  rT.  

(3) 

(4) 
( E )  is the mean intensity integrated over the sample time T and I’ the reciprocal 
coherence time characterizing the field or first-order optical correlation function 

gL(I)(~) = exp( - I? 171 + iwoT) ( 5 )  
w 0  being the centre frequency of the lorentzian spectrum. P(s) is defined in terms of 
equations (3) and (4) by 

P(s) = - - - - sinhy , U; ;I 1-l 

If n( t )  is the number of counts arriving in the interval T centred at time t ,  and the 
clipped photon count is defined by 

n&(t) = 1 if n(t)  > k 
= o  if n(t) < k (7) 

then the normalized autocorrelation function of photon-counting fluctuations with 
arbitrary generating functions Q(s), Q(s, s’) is given by 

The corresponding quantity when clipping is carried out in one channel at an arbit- 
rary level k is (Jakeman and Pike 1969) 

where f i  = u ( E )  is the mean count per sample and U is the quantum efficiency of 
the detector. This we call the ‘single-clipped’ correlation function. A further 
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quantity of interest is the ‘double-clipped’ correlation function. When clipping is 
carried out at zero in both channels we obtain (Jakeman and Pike 1969) 

The  mean clipped count per sample f i k  is given by 

The  formulae (8)-(11) apply only in the absence of dead-time effects and were 
evaluated for gaussian-lorentzian light using relations (1)-(6) in the earlier paper 
(Jakeman 1970). In  figures 2 and 3 go(2)(T) and goo(2)(T) are plotted as functions of T 
for the case T = T (ie the first channel). These curves do not, of course, contain the 
effects of dead times in the electronic instrumentation or of finite aperture sizes in 
the optical system, and the corrections due to these factors which must be applied 
to the experimental results before comparison with figures 2 and 3 will now be 
considered. 

2.1. Aperture correction 
The effect of finite apertures on autocorrelation measurements has been considered 

recently, for a system with cylindrical symmetry, by Jakeman et al. (1970) who showed 

I 
IO 

1‘ 

k 
0 2 4 6 8 

Figure 1. The  dependence of the correlation coefficient g , @ ) ( T )  for clipping at a 
level K in one channel, as a function of K .  Two values of the mean count rate (0.5 
and 2.0) are considered. For comparison the theoretically predicted values are 
also given after (i) a simple correction for loss of spatial coherence due to finite 
apertures (broken line) and (ii) after a more accurate correction for these effects 

(full line). These data have also been corrected for small dead-time effects. 
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Figure 2. The dependence of the correlation coefficient goc2)(  T) - 1, for clipping 
at zero in one channel, as a function of the ratio of the sample time T to the co- 
herence time T~ for various mean count rates. The data are corrected for spatial- 

coherence and dead-time effects. 

that the correlation function defined by equation (8) above takes the form 

where 

Here K = koS/2Z,  k ,  being the wavevector of the light, S and R the radii of the 
scattering volume and the photocathode or receiver aperture respectively and 2 the 
mean distance of the scattering volume from the detector. Extending the calculation 
of the earlier paper to evaluate clipped autocorrelation functions is difficult owing to 
the form of equations (9)-(11). However, it is possible to devise an approximation 
analogous to that used by BCdard et al. (1967) in connection with the sample-time 
dependence of photon-counting distributions. 

If the detector area is so large that it can be resolved into a large number N of 
coherence areas (defined roughly by KR N 1 in the above notation) then the distribu- 
tions of photons falling on the subareas will be virtually independent and the generat- 
ing functions characterizing the entire system will be simple products over those 
characterizing the subareas (see for example Lachs 1965, Perina 1967). Thus the 
generating function of the joint integrated intensity distribution of gaussian-lorentzian 
light falling on a photocathode of N coherence areas is {QL(s, s ' ) } ~ ,  where Q,(s, s') 
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is given by equations (1)-(6) with (E) replaced by ( E ) / N .  Although this result is 
exact only in the limit N --f CO, it can be used, following the procedure of BCdard et 
al. (1967), as an approximation to the true generating function for all detector areas 
if N is replaced by a nonintegral parameter 7 which is adjusted to give the correct 
lowest order autocorrelation function (12). It is not difficult to show that 

77-1 = f ( 4 -  (14) 

@L(S, S ' ) lV  (15) 

Since the resulting generating function 

where &(s, s') is now given by equations (1)-(6) with ( E )  replaced by ( E ) / q  and 
7 is defined by equation (14), is exact in the limits 77 --f 1 , ~  --f CO and yields the correct 
intensity autocorrelation function for all 7, it might be expected to generate at least 
the lowest moments of the joint photon-counting distribution with a reasonable 
degree of accuracy. 

In  the case of clipping at zero the appropriate correction can now be derived 
straightforwardly from equations (9) to (11) and (14) and (15). For present purposes 
it is sufficient to calculate the aperture correction for the general case of single clipping 
at K in the limit of small sample time ( y  + 0); equation (15) then reduces to 

((1 +SX)(l  +S'X) -SS'X21g(1)(T)12}-V (16) 
where x = i i / y ,  77 is defined by equation (14) and g")(T) is given by equation (5) for a 
lorentzian spectrum. Substituting into equations (9), (10) and (11) leads to 

1 Xi",=,(ii-m){(~)m/m!}xm(l +%)-(U+ m+l) 
g,'"(T) = 1 + -- lg'1'(412 (17) 7 1 - ~ ~ = O { ( ~ ) m / m ! } X ~ ( l  +x)-'"") 

(18) 

and 
1-2(1 + x ) - n + { ( l + X ) 2 - X 2 1 g ( 1 ) ( T ) 1 2 } - V  

goo'2'(T) = ~ - _ _  
(1 - (1 +x)- ,>2 

where 
(17)m = 7 ( 7 + 1 ) * * . ( 7 + m - ~ ) .  

2.2. Dead-time corrections 
It has been shown (De Lotto et al. 1964) that the Poisson emission probability 

of photoelectrons due to an integrated intensity E falling on the photocathode of a 
detector is modified by the presence of dead-time effects as followsf : 

77) 

T 
l + n ( a E - n + l ) -  + O  (XEY exp( - aE) -+ - (XEP 

n! n! 
where T D  < T is the dead time after each registration of the arrival of a photon. 
The  joint photon counting and integrated intensity fluctuation distributions are 
related through the equation (retaining terms up to first order in T D / T  only) 

O0 (xE)" ( E E ' ) ~  
0 n! m! 

dE'__- exp{ - K ( E +  E')}P(E, E ' )  

{n(aE- n + 1) + m(aE' - m + 1)) (20) 

7 Assuming that the electronic processing time is larger than T~ so that dead times do 
not overlap samples. 
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where 

Q(s, s')  = (exp{-(sE+s'E'))) = 1," dE/: dE'exp{-(sE+s'E'))P(E, Er). (21) 

It is both intuitively obvious and evident from equation (20) that the quantity 
" 

goo'2'(T) = 2 c p(., m) = (1 - 2p(O) +P(O, 0) ) / f io2  (22) 
n = l  f f l = l  

is unaffected by the presence of a dead time. The normalized, single-clipped auto- 
correlation defined by 

is changed, however. The  right hand side of equation (23) may be written, using 
equations (20) and (21), in the form 

which replaces the right hand side of equation (9). This can be evaluated in principle 
using equation (15) but we consider here only the case y -+ 0, 77 = 1. Substituting 
equation (16) with 77 = 1 into equation (24) leads to 

X { 2 + 2 f i - k +  lg'1'(T)12(k-2fi)}. (25 ) 
For small values of T the fractional dead-time correction to the lg'1'(T)[2 term is 
-~&!fi/T(l+fi). This suggests that the validity of the approximation should be 
independent of K .  However, examination of the intermediate stages of the calculation 
casts doubt on this conclusion. For arbitrary T the fractional correction appearing in 
equation (25) becomes large and positive for K S 2E+2/(1- lg(1)[T)12) and becomes 
large and negative for E S ik- I/( 1 - lg(1)(T)12) so that the approximation is not good 
in these regions. 

3. Apparatus and methods 
The experimental arrangement used in this work was essentially the same as that 

used in earlier publications (Foord et al. 1969, 1970, Pike 1969). As previously, 
light from a Spectra Physics 125 He-Ne laser was scattered from a solution of protein 
molecules undergoing Brownian motion. The  protein used was haemocyanin (murex 
trunculus) which can be prepared in a monodisperse form and has been shown to have 
a lorentzian spectrum with gaussian statistics as required by the theory (Foord et al. 
1970). The  concentration of the solution was made sufficiently high (5 mg ml-1) 
for the scattered intensity to be adequate but without concentration effects becoming 
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apparent, which might modify the statistics (Foord et al. 1970). The  light scattered 
from the focussed laser beam was collimated by apertures at the source and detector, 
the latter being an ITT FW130 selected for its good photon-counting performance and 
low dark-count rate. The  fraction of a coherence area subtended by the detector was 
obtained by measurement of the photon-counting distribution. Calculation of the 
second factorial moment of this distribution enabled the coherence area correction to 
be obtained since, in this case, temporal and spatial corrections factorize (Jakeman 
et al. 1970). 

For each experiment it was necessary to consider the effects discussed above, of 
spatial coherence (aperture) correction and dead-time correction before studying the 
effects of time averaging. As far as possible these corrections were investigated 
separately and various experimental limits were used to satisfy these requirements. 

4. Results and discussion 
In  order to investigate the correlation coefficients at different clipping levels it 

was necessary to use an aperture of size appreciable with respect to a coherence area 
so that high enough count rates could be attained. The  dead-time correction could 
be minimized by choosing a sample time (300 ps) much greater than the system dead 
time (1 ps). Even with high count rates ( f i  = 2) and high clipping levels (k = 8) the 
clipped counts were then only affected by a few percent. The  theory was first tested 
for unaveraged values ( T  -to). T o  remove the integration effect of finite sample 
times the scattering angle was reduced to 22" 10' giving a coherence time by 3.8 ms 
so that y = 0,079. Under these conditions the temporal correction factor is very 
close to unity. 

The  first correlation coefficient (delay equal to sample time) of the single-clipped 
autocorrelation function gk(2) (  T )  - 1 was now measured as a function of clipping level 
k for count rates of fi  = 0.5 and 2.0. The  data are plotted in figure 1 after correction 
for dead-time effects. The  error bars shown correspond to the statistical spread in the 
results over several runs. This accuracy is determined by the clipping level and the 
experiment duration which was 30 s for k < 8 and 300 s for k = 8 or 9. If the cor- 
rection factor f (A,  T ,  f i ,  k) factorized so that the correlation coefficient for single- 
clipping at k could be written as 

l + k  
gk2) (T )  - 1 = f ( A )  exp( - 2K2D,T) 

1-n  

with f (A )  independent of k, fi  and T ,  then the predicted coefficients would be as 
shown by the broken lines on figure 1. For high k this approximation is manifestly 
not correct. If one uses the more accurate equation (17) then the full line in figure 1 
is obtained. This is in much closer agreement with the observed data, though for 
higher k and f i  the prediction still lies slightly below the observed data. 

The  effects of integration were next investigated. The  scattering angle was changed 
to 90" giving a coherence time of 270 ps for the scattered light. The  first correlation 
coefficient with single- and double-clipping at zero was measured over a range of 
sample times from 27 ps to 864 ps and for count rates of 0.1, 0.5, 2.0 and 4.0 counts 
per sample time. Comparison of experiment with theory was chiefly affected by the 
uncertainty of fi  for high fi  and short sample time due to the increasingly large dead- 
time correction. This correction only applies strictly in the limit of y + 0 which is 
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where the dead time has most effect. As y increases the correction becomes very 
small ( N 1% at y = 3 and ii = 4) and the inaccuracy introduced by using the same 
approximation becomes negligible. Next the data were corrected for the coherence- 
area effect using the approximation that has already been verified. This too only 
applies in the limit of y + 0 but, since the correction is only small for high y, by in- 
cluding the temporal correction in the spatial term a reasonable approximation could 
be made. 

The  statistical accuracy of the data points was governed by the length of experi- 
ment (N 100 s) and varied between 1% for low ii and y to 20% for high ii and y. 
I n  the high E ,  high y region the statistical uncertainties became greater than the dead- 
time and spatial-coherence corrections so no further refinements of these latter 
corrections were necessary. The  statistical errors were obtained by making 
several readings of each quantity. 

I n  figure 2 we compare the corrected data for the first correlation coefficient, 
with clipping at zero in one channel, as a function of count rate and sample time. 
The  full curves are those calculated by Jakeman (1970). The  agreement is every- 
where within the statistical errors justifying the use of the corrections made and 
indicating the validity of the theory. I n  figure 3 a similar result is shown for the 
double clipped correlation coefficientg,,(2)( T )  - 1. In  this case also the agreement with 
the theory is seen to be good within experimental errors. 

Figure 3. The dependence of the correlation coefficient g, , (2) (T)  -1, for clipping 
at zero in both channels, as a function of the ratio of the sample time T to the 
coherence time T~ for various mean count rates. The data are corrected for 

spatial-coherence effects. 
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5. Conclusions 
By applying corrections for dead-time and for spatial-coherence effects an experi- 

mental confirmation of the recent results of Jakeman (1970) on the time averaging of 
photon-counting fluctuations in clipped autocorrelation is obtained. Thus theoretical 
results have now been given which enable a satisfactory complete interpretation of 
the experimental clipped autocorrelation functions to be made for gaussian-lorentzian 
light sources. 
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